Preparation of Sigmatropic 2-Acyloxy-5-perfluoroalkoxytropones: New Monocyclic Troponoid Liquid Crystals with an Enantiotropic Smectic A Phase

Akira Mori,* Shinji Takematsu,[†] and Hitoshi Takeshita^{††}
Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816
[†]Graduate School of Engineering Sciences, 39, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816
^{††}Tohwa Institute for Oriental Science, Tohwa University, Chikushi-ga-oka, Minami-ku, Fukuoka 815

(Received June 13, 1997; CL-970449)

Monocyclic sigmatropic troponoid liquid crystals with a 2-(perfluoroalkyl)ethoxyl group at C-5 showed an enantiotropic smectic A phase. They have higher melting and clearing points than the corresponding non-fluorinated compounds, which exhibit a monotropic smectic A phase.

Previously we have reported that troponoids which have an acyl group at C-2 and an alkoxy group at C-5 showed a monotropic smectic A phase¹ whereas those having an alkoxy group at C-2 and an acyl group at C-5 did a virtual smectic A phase.² Similarly troponoids with acyl groups at C-2 and C-5 exhibited a monotropic smectic A phase.³ Recently, Takenaka⁴ has observed that monocyclic benzenoids having a fluorinated alkyl substituent were mesogenic, in which the fluorinated alkyl group worked as a core part. In this paper, we report the preparation of monocyclic troponoid liquid crystals 1 with a fluorinated alkyl group at C-5, which showed an enantiotropic smectic A phase.

X=OR, Y=OOCR': monotropic
$$S_A$$

X = OOCR, Y=OR': virtual S_A
X=OOCR, Y=OOCR': monotropic S_A

Compounds 1 were prepared as follows; 5-hydroxy-tropolone (2) was treated with acyl chloride in the presence of HMPA to give 2-acyloxy-5-hydroxytropone (3), which was used for alkylation without purification. Alkylation of 3 with 2-(n-

perfluoroalkyl)ethanol in the presence of DEAD and PPh₃ gave the desired **1** in 14-31% yields.⁵ The ¹H NMR spectra of **1** revealed a [1,9] sigmatropic rearrangement, being similar to those of the corresponding non-fluorinated ones.¹

HO OH
$$C_nH_{2n+1}COCI$$
 HO C_nH_{2n+1}
 $C_mF_{2m+1}C_2H_4OH$

DEAD, PPh₃

THF

C_mF_{2m+1}C₂H₄O

C_m

The phase of 1 was determined by a differential scanning calorimeter (DSC) and the thermal behaviors of microscopic textures were observed using a polarizing microscope equipped with a hot stage. The transition temperatures and enthalpy changes are summarized in Table 1.

Compounds 1 showed an enantiotropic smectic A phase. The effect of the perfluoroalkyl group on melting and clearing points is shown in Figure 1, where the perfluoroalkyl group raised more clearing points than melting points.^{6,7}

Table 2 summarizes the effects of the chain length at C-5 on the transition temperatures. The longer the length, the higher both melting and clearing points. While the chain length at C-2 was lengthened, melting and clearing points were lowered as shown in Table 1. This behavior was different to that of non-fluorinated series.¹

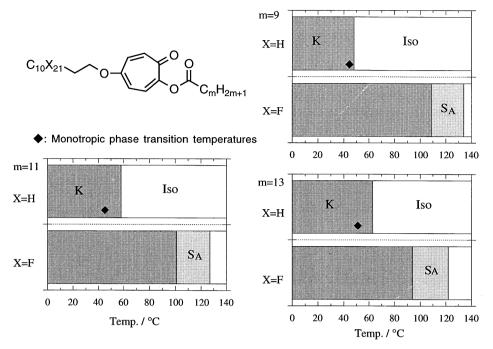

Thus, a perfluoroalkyl group acted as a core to enhance the thermal stability of 1, which enabled to prepare enantiotropic

Table 1. Transition temperatures (T/°C) (left) and enthalpy changes (ΔH/ kJmol⁻¹) of 1

	m	n	K		S_A		Iso		K		S_A		Iso
1a	6	7	•	84	•	100	•		•	24	•	6	•
1b	6	8	•	- 80	•	100	•	l	•	27	•	7	•
1c	6	9	•	80	•	97	•		•	26	•	6	•
1d	6	11	•	75	•	89	•		•	33	•	7	•
1e	8	7	•	101	•	123	•		•	36	•	7	•
1f	8	8	•	96	•	120	•		•	35	•	8	• '
1g	8	9	•	99	•	118	•		•	40	•	8	•
1ĥ	8	11	•	90	•	113	•		•	37	•	8	•
1i	10	9	•	109	•	134	•		•	37	•	9	•
1j	10	11	•	101	•	127	•		•	27	•	7	•
1k	10	13	•	94	•	122	•		•	34	•	7	•

K: Crystals, SA: Smectic A phase, Iso: Isotropic liquid

1010 Chemistry Letters 1997

Figure 1. Comparison of the transition temperatures between compounds **1** and the corresponding non-fluorinated compounds.

Table 2. Effect of the chain length (m) on the transition temperatures (T/ $^{\circ}$ C)

	m n K S _A					Iso		
1c 1g 1i	6 8 10	9 9 9	•	80 99 109	•	97 118 134	•	
1d 1h 1j	6 8 10	11 11 11	•	75 90 101	•	89 113 127	•	

mesogenic compounds even though they are monocyclic. This is the first example that monocyclic troponoids show an enantiotropic mesogenic phase.

References and Notes

- A. Mori, M. Uchida, and H. Takeshita, *Chem. Lett.*, **1989**, 591; A. Mori, H. Takeshita, K. Kida, and M. Uchida, *J. Am. Chem. Chem.*, **112**, 8635 (1990); K. Kida, A. Mori, and H. Takeshita, *Mol. Cryst. Liq. Cryst.*, **199**, 387 (1991).
- 2 A. Mori, S. Takematsu, M. Isobe, and H. Takeshita, *Chem. Lett.*, 1995, 15.
- 3 A. Mori, R. Mori, and H. Takeshita, Chem. Lett., 1991, 1795
- 4 S. Takenaka, J. Chem. Soc., Chem. Commun., 1992, 1748.
- 5 Physical data of 1: 1a; mp 84 °C; ¹H-NMR (CDCl₃) δ 0.88

(3H, t, J=7.5 Hz), 1.30-1.42 (8H, m), 1.76 (2H, m), 2.60 (2H, t, J=7.5 Hz), 2.67 (2H, m), 4.24 (2H, t, J=6.4 Hz),6.70 (2H, br s), and 7.15 (2H, d, J=12.1 Hz); IR (KBr) ν 2963, 2862, 1758, 1586, 1537, 1390, 1245, 1210, 1185, 1141, 870, 700, and 651 cm⁻¹; MS m/z (%) 483 (100), 126 (25), 108 (31), 56 (63), and 42 (25); Found: C; 44.47, H; 2.97%. Calcd for $C_{23}H_{23}O_4F_{13}$: C; 45.26, H; 3.80%. **1b**; mp 80 °C; Found: C; 46.38, H; 4.10%. Calcd for $C_{24}H_{25}O_4F_{13}$: C; 46.16, H; 4.04%. **1c**; mp 80 °C; Found: C; 46.70, H; 4.32%. Calcd for C₂₅H₂₇O₄F₁₃: C; 47.03, H; 4.26%. 1d; mp 75 °C; Found: C; 48.64, H; 4.76%. Calcd for C₂₇H₃₁O₄F₁₃: C; 48.66, H; 4.69%. **1e**; mp 101 °C; Found: C; 42.67, H; 3.11%. Calcd for C₂₅H₂₃O₄F₁₇: C; 42.27, H; 3.26%. 1f; mp 96 °C; Found: C; 43.11, H; 3.23%. Calcd for C₂₆H₂₅O₄F₁₇: C; 43.11, H; 3.48%. **1g**; mp 99 °C; Found: C; 44.05, H; 3.76%. Calcd for C₂₇H₂₇O₄F₁₇: C; 43.91, H; 3.69%. 1h; mp 90 °C; Found: C; 45.36, H; 4.11%. Calcd for C₂₉H₃₁O₄F₁₇: C; 45.44, H; 4.07%. **1i**; mp 109 °C; Found: C; 41.42, H; 3.37%. Calcd for $C_{29}H_{27}O_4F_{21}$: C; 41.54, H; 3.25%. 1j; mp 101 °C; Found: C; 43.04, H; 3.17%. Calcd for $C_{31}H_{31}O_4F_{21}$: C; 42.97, H; 3.61%. **1k**; mp 94 °C; Found: C; 44.13, H; 3.81%. Calcd for C₃₃H₃₅O₄F₂₁: C;

- 6 T. Doi, Y. Sakurai, A. Tamatani, S. Takenaka, S. Kusabayashi, Y. Nishihata, and H. Terauchi, J. Mater. Chem., 1, 169 (1991).
- 7 H. Bernhardt, W. Weissflog, and H. Mresse, *Chem. Lett.*, 1997, 151.